Examining Trait × Method Interactions Using Mixture Distribution Multitrait–Multimethod Models
نویسندگان
چکیده
منابع مشابه
Robust Mixture Regression Models Using T - Distribution
In this report, we propose a robust mixture of regression based on t-distribution by extending the mixture of t-distributions proposed by Peel and McLachlan (2000) to the regression setting. This new mixture of regression model is robust to outliers in y direction but not robust to the outliers with high leverage points. In order to combat this, we also propose a modified version of the propose...
متن کاملGas Distribution Modeling using Sparse Gaussian Process Mixture Models
In this paper, we consider the problem of learning a two dimensional spatial model of a gas distribution with a mobile robot. Building maps that can be used to accurately predict the gas concentration at query locations is a challenging task due to the chaotic nature of gas dispersal. We present an approach that formulates this task as a regression problem. To deal with the specific properties ...
متن کاملTracking Facial Features Using Mixture of Point Distribution Models
We present a generic framework to track shapes across large variations by learning non-linear shape manifold as overlapping, piecewise linear subspaces. We use landmark based shape analysis to train a Gaussian mixture model over the aligned shapes and learn a Point Distribution Model(PDM) for each of the mixture components. The target shape is searched by first maximizing the mixture probabilit...
متن کاملModel Selection for Mixture Models Using Perfect Sample
We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...
متن کاملDisease mapping using mixture distribution.
BACKGROUND & OBJECTIVES Data on infectious diseases like tuberculosis (TB) have been analyzed in the past without giving adequate attention to spatial variations. Earlier studies also attempted to display disease status of sub regions, usually census tracts, by categorizing them into quartiles, that helps the authorities to identify high- or low-risk areas. This approach is based mainly on bino...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Structural Equation Modeling: A Multidisciplinary Journal
سال: 2016
ISSN: 1070-5511,1532-8007
DOI: 10.1080/10705511.2016.1238307